Strategy Base

Base class containing the core methods of CRLD agents in strategy space

source

strategybase

 strategybase (env, learning_rates:Union[float,Iterable],
               discount_factors:Union[float,Iterable],
               choice_intensities:Union[float,Iterable]=1.0,
               use_prefactor=False, opteinsum=True, **kwargs)

Base class for deterministic strategy-average independent (multi-agent) temporal-difference reinforcement learning in strategy space.

Type Default Details
env An environment object
learning_rates Union agents’ learning rates
discount_factors Union agents’ discount factors
choice_intensities Union 1.0 agents’ choice intensities
use_prefactor bool False use the 1-DiscountFactor prefactor
opteinsum bool True optimize einsum functions
kwargs

Further optional paramerater inherting from abase:

Type Default Details
use_prefactor bool False use the 1-DiscountFactor prefactor
opteinsum bool True optimize einsum functions

source

strategybase.step

 strategybase.step (Xisa)

Performs a learning step along the reward-prediction/temporal-difference error in strategy space, given joint strategy Xisa.

Type Details
Xisa Joint strategy
Returns tuple (Updated joint strategy, Prediction error)

source

strategybase.reverse_step

 strategybase.reverse_step (Xisa)

*Performs a reverse learning step in strategy space, given joint strategy Xisa.

This is useful to compute the separatrix of a multistable regime.*

Type Details
Xisa Joint strategy
Returns tuple (Updated joint strategy, Prediction error)

source

strategybase.zero_intelligence_strategy

 strategybase.zero_intelligence_strategy ()

Returns strategy Xisa with equal action probabilities.


source

strategybase.random_softmax_strategy

 strategybase.random_softmax_strategy ()

Returns softmax strategy Xisa with random action probabilities.


source

strategybase.id

 strategybase.id ()

Returns an identifier to handle simulation runs.